Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 20(1): 466, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31500560

RESUMO

BACKGROUND: Although many of the genic features in Mycobacterium abscessus have been fully validated, a comprehensive understanding of the regulatory elements remains lacking. Moreover, there is little understanding of how the organism regulates its transcriptomic profile, enabling cells to survive in hostile environments. Here, to computationally infer the gene regulatory network for Mycobacterium abscessus we propose a novel statistical computational modelling approach: BayesIan gene regulatory Networks inferreD via gene coExpression and compaRative genomics (BINDER). In tandem with derived experimental coexpression data, the property of genomic conservation is exploited to probabilistically infer a gene regulatory network in Mycobacterium abscessus.Inference on regulatory interactions is conducted by combining 'primary' and 'auxiliary' data strata. The data forming the primary and auxiliary strata are derived from RNA-seq experiments and sequence information in the primary organism Mycobacterium abscessus as well as ChIP-seq data extracted from a related proxy organism Mycobacterium tuberculosis. The primary and auxiliary data are combined in a hierarchical Bayesian framework, informing the apposite bivariate likelihood function and prior distributions respectively. The inferred relationships provide insight to regulon groupings in Mycobacterium abscessus. RESULTS: We implement BINDER on data relating to a collection of 167,280 regulator-target pairs resulting in the identification of 54 regulator-target pairs, across 5 transcription factors, for which there is strong probability of regulatory interaction. CONCLUSIONS: The inferred regulatory interactions provide insight to, and a valuable resource for further studies of, transcriptional control in Mycobacterium abscessus, and in the family of Mycobacteriaceae more generally. Further, the developed BINDER framework has broad applicability, useable in settings where computational inference of a gene regulatory network requires integration of data sources derived from both the primary organism of interest and from related proxy organisms.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Mycobacterium abscessus/genética , Software , Área Sob a Curva , Bactérias/genética , Simulação por Computador , Regulação Bacteriana da Expressão Gênica , Curva ROC , Regulon/genética
2.
PLoS One ; 14(1): e0200974, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629579

RESUMO

Bacterial overgrowth in the uterus is a normal event after parturition. In contrast to the healthy cow, animals unable to control the infection within 21 days after calving develop postpartum endometritis. Studies on the Microbial Ecology of the bovine reproductive tract have focused on either vaginal or uterine microbiomes. This is the first study that compares both microbiomes in the same animals. Terminal Restriction Fragment Length Polymorphism of the 16S rRNA gene showed that despite large differences associated to individuals, a shared community exist in vagina and uterus during the postpartum period. The largest changes associated with development of endometritis were observed at 7 days postpartum, a time when vaginal and uterine microbiomes were most similar. 16S rRNA pyrosequencing of the vaginal microbiome at 7 days postpartum showed at least three different microbiome types that were associated with later development of postpartum endometritis. All three microbiome types featured reduced bacterial diversity. Taken together, the above findings support a scenario where disruption of the compartmentalization of the reproductive tract during parturition results in the dispersal and mixing of the vaginal and uterine microbiomes, which subsequently are subject to differentiation. This differentiation was observed early postpartum in the healthy cow. In contrast, loss of bacterial diversity and dominance of the microbiome by few bacterial taxa were related to a delayed succession at 7DPP in cows that at 21 DPP or later were diagnosed with endometritis.


Assuntos
Bactérias , Doenças dos Bovinos , Endometrite , Microbiota/genética , Período Pós-Parto , Útero , Vagina , Animais , Bactérias/classificação , Bactérias/genética , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/patologia , Endometrite/microbiologia , Endometrite/patologia , Feminino , Gravidez , Útero/microbiologia , Útero/patologia , Vagina/microbiologia , Vagina/patologia
3.
Nucleic Acids Res ; 46(18): 9684-9698, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29986115

RESUMO

We present the first high-resolution determination of transcriptome architecture in the priority pathogen Acinetobacter baumannii. Pooled RNA from 16 laboratory conditions was used for differential RNA-seq (dRNA-seq) to identify 3731 transcriptional start sites (TSS) and 110 small RNAs, including the first identification in A. baumannii of sRNAs encoded at the 3' end of coding genes. Most sRNAs were conserved among sequenced A. baumannii genomes, but were only weakly conserved or absent in other Acinetobacter species. Single nucleotide mapping of TSS enabled prediction of -10 and -35 RNA polymerase binding sites and revealed an unprecedented base preference at position +2 that hints at an unrecognized transcriptional regulatory mechanism. To apply functional genomics to the problem of antimicrobial resistance, we dissected the transcriptional regulation of the drug efflux pump responsible for chloramphenicol resistance, craA. The two craA promoters were both down-regulated >1000-fold when cells were shifted to nutrient limited medium. This conditional down-regulation of craA expression renders cells sensitive to chloramphenicol, a highly effective antibiotic for the treatment of multidrug resistant infections. An online interface that facilitates open data access and visualization is provided as 'AcinetoCom' (http://bioinf.gen.tcd.ie/acinetocom/).


Assuntos
Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , RNA Bacteriano/genética , Transcriptoma/genética , Acinetobacter baumannii/efeitos dos fármacos , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA/métodos
4.
Trends Microbiol ; 25(12): 953-954, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29097088

RESUMO

Many bacteria move in their environment using a remarkable, rotating nanomachine - the flagellum. In a recent publication, Choi et al. report a new addition to the group of flagellar regulators, a trans-acting small RNA (sRNA).


Assuntos
Flagelina , RNA , Flagelos , Salmonella enterica , Virulência
5.
BMC Genomics ; 17: 553, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27495169

RESUMO

BACKGROUND: Mycobacterium abscessus subsp. abscessus (MAB) is a highly drug resistant mycobacterium and the most common respiratory pathogen among the rapidly growing non-tuberculous mycobacteria. MAB is also one of the most deadly of the emerging cystic fibrosis (CF) pathogens requiring prolonged treatment with multiple antibiotics. In addition to its "mycobacterial" virulence genes, the genome of MAB harbours a large accessory genome, presumably acquired via lateral gene transfer including homologs shared with the CF pathogens Pseudomonas aeruginosa and Burkholderia cepacia. While multiple genome sequences are available there is little functional genomics data available for this important pathogen. RESULTS: We report here the first multi-omics approach to characterize the primary transcriptome, coding potential and potential regulatory regions of the MAB genome utilizing differential RNA sequencing (dRNA-seq), RNA-seq, Ribosome profiling and LC-MS proteomics. In addition we attempt to address the genomes contribution to the molecular systems that underlie MAB's adaptation and persistence in the human host through an examination of MABs transcriptional response to a number of clinically relevant conditions. These include hypoxia, exposure to sub-inhibitory concentrations of antibiotics and growth in an artificial sputum designed to mimic the conditions within the cystic fibrosis lung. CONCLUSIONS: Our integrated map provides the first comprehensive view of the primary transcriptome of MAB and evidence for the translation of over one hundred new short open reading frames (sORFs). Our map will act as a resource for ongoing functional genomics characterization of MAB and our transcriptome data from clinically relevant stresses informs our understanding of MAB's adaptation to life in the CF lung. MAB's adaptation to growth in artificial CF sputum highlights shared metabolic strategies with other CF pathogens including P. aeruginosa and mirrors the transcriptional responses that lead to persistence in mycobacteria. These strategies include an increased reliance on amino acid metabolism, and fatty acid catabolism and highlights the relevance of the glyoxylate shunt to growth in the CF lung. Our data suggests that, similar to what is seen in chronically persisting P. aeruginosa, progression towards a biofilm mode of growth would play a more prominent role in a longer-term MAB infection. Finally, MAB's transcriptional response to antibiotics highlights the role of antibiotic modifications enzymes, active transport and the evolutionarily conserved WhiB7 driven antibiotic resistance regulon.


Assuntos
Adaptação Biológica , Evolução Molecular , Genoma Bacteriano , Interações Hospedeiro-Patógeno , Mycobacterium/genética , Transcriptoma , Adaptação Biológica/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Hipóxia , Ferro/metabolismo , Mycobacterium/metabolismo , Fases de Leitura Aberta , Isoformas de Proteínas , RNA Bacteriano , Sideróforos/biossíntese , Estresse Fisiológico/genética
6.
BMC Genomics ; 16: 1046, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26654095

RESUMO

BACKGROUND: Mycobacterium abscessus (MAB) is an emerging pathogen causing pulmonary infections in those with inflammatory lung disorders, such as Cystic Fibrosis (CF), and is associated with the highest fatality rate among rapidly growing mycobacteria (RGM). Phenotypically, MAB manifests as either a Smooth (MAB-S) or a Rough (MAB-R) morphotype, which differ in their levels of cell wall glycopeptidolipids (GPLs) and in their pathogenicity in vivo. As one of the primary immune cells encountered by MAB, we sought to examine the early transcriptional events within macrophages, following infection with both MAB-S or MAB-R. RESULTS: We sampled the transcriptomes (mRNA and miRNA) of THP-1-derived macrophages infected with both MAB-R and MAB-S at 1, 4 and 24 h post-infection (hpi) using RNA-seq. A core set of 606 genes showed consistent expression profiles in response to both morphotypes, corresponding to the early transcriptional response to MAB. The core response is type I Interferon (IFN)-driven, involving the NF-κB and MAPK signaling pathways with concomitant pro-inflammatory cytokine production, and network analysis identified STAT1, EGR1, and SRC as key hub and bottleneck genes. MAB-S elicited a more robust transcriptional response at both the mRNA and miRNA levels, which was reflected in higher cytokine levels in culture supernatants. The transcriptional profiles of macrophages infected with both morphotypes were highly correlated, however, and a direct comparison identified few genes to distinguish them. Most of the induced miRNAs have previously been associated with mycobacterial infection and overall miRNA expression patterns were similarly highly correlated between the morphotypes. CONCLUSIONS: The report here details the first whole transcriptome analysis of the early macrophage response to MAB infection. The overall picture at the early stages of macrophage infection is similar to that of other mycobacteria, reflected in a core type I IFN and pro-inflammatory cytokine response. Large-scale transcriptional differences in the host response to the different MAB morphotypes are not evident in the early stages of infection, however the subset of genes with distinct expression profiles suggest potentially interesting differences in internal trafficking of MAB within macrophages.


Assuntos
Perfilação da Expressão Gênica/métodos , Macrófagos/virologia , Infecções por Mycobacterium/genética , Mycobacterium/classificação , Análise de Sequência de RNA/métodos , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Macrófagos/citologia , Macrófagos/imunologia , MicroRNAs/genética , Mycobacterium/patogenicidade , Infecções por Mycobacterium/imunologia , RNA Mensageiro/genética
7.
Infect Immun ; 83(8): 3137-45, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26015480

RESUMO

Rhodococcus equi is a facultative intracellular pathogen of macrophages, relying on the presence of a conjugative virulence plasmid harboring a 21-kb pathogenicity island (PAI) for growth in host macrophages. The PAI encodes a family of 6 virulence-associated proteins (Vaps) in addition to 20 other proteins. The contribution of these to virulence has remained unclear. We show that the presence of only 3 virulence plasmid genes (of 73 in total) is required and sufficient for intracellular growth. These include a single vap family member, vapA, and two PAI-located transcriptional regulators, virR and virS. Both transcriptional regulators are essential for wild-type-level expression of vapA, yet vapA expression alone is not sufficient to allow intracellular growth. A whole-genome microarray analysis revealed that VirR and VirS substantially integrate themselves into the chromosomal regulatory network, significantly altering the transcription of 18% of all chromosomal genes. This pathoadaptation involved significant enrichment of select gene ontologies, in particular, enrichment of genes involved in transport processes, energy production, and cellular metabolism, suggesting a major change in cell physiology allowing the bacterium to grow in the hostile environment of the host cell. The results suggest that following the acquisition of the virulence plasmid by an avirulent ancestor of R. equi, coevolution between the plasmid and the chromosome took place, allowing VirR and VirS to regulate the transcription of chromosomal genes in a process that ultimately promoted intracellular growth. Our findings suggest a mechanism for cooption of existing chromosomal traits during the evolution of a pathogenic bacterium from an avirulent saprophyte.


Assuntos
Infecções por Actinomycetales/microbiologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Plasmídeos/genética , Rhodococcus equi/fisiologia , Transcriptoma , Adaptação Fisiológica , Animais , Proteínas de Bactérias/metabolismo , Humanos , Camundongos , Plasmídeos/metabolismo , Rhodococcus equi/genética , Rhodococcus equi/crescimento & desenvolvimento , Transcrição Gênica , Fatores de Virulência/genética
8.
mBio ; 5(4): e01169-14, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25096875

RESUMO

Related species are often used to understand the molecular underpinning of virulence through examination of a shared set of biological features attributable to a core genome of orthologous genes. An important but insufficiently studied issue, however, is the extent to which the regulatory architectures are similarly conserved. A small number of studies have compared the primary transcriptomes of different bacterial species, but few have compared closely related species with clearly divergent evolutionary histories. We addressed the impact of differing modes of evolution within the genus Mycobacterium through comparison of the primary transcriptome of M. marinum with that of a closely related lineage, M. bovis. Both are thought to have evolved from an ancestral generalist species, with M. bovis and other members of the M. tuberculosis complex having subsequently undergone downsizing of their genomes during the transition to obligate pathogenicity. M. marinum, in contrast, has retained a large genome, appropriate for an environmental organism, and is a broad-host-range pathogen. We also examined changes over a shorter evolutionary time period through comparison of the primary transcriptome of M. bovis with that of another member of the M. tuberculosis complex (M. tuberculosis) which possesses an almost identical genome but maintains a distinct host preference. Importance: Our comparison of the transcriptional start site (TSS) maps of M. marinum and M. bovis uncovers a pillar of conserved promoters, noncoding RNA (NCRNA), and a genome-wide signal in the -35 promoter regions of both species. We identify evolutionarily conserved transcriptional attenuation and highlight its potential contribution to multidrug resistance mediated through the transcriptional regulator whiB7. We show that a species population history is reflected in its transcriptome and posit relaxed selection as the main driver of an abundance of canonical -10 promoter sites in M. bovis relative to M. marinum. It appears that transcriptome composition in mycobacteria is driven primarily by the availability of such sites and that their frequencies diverge significantly across the mycobacterial clade. Finally, through comparison of M. bovis and M. tuberculosis, we illustrate that single nucleotide polymorphism (SNP)-driven promoter differences likely underpin many of the transcriptional differences between M. tuberculosis complex lineages.


Assuntos
Mycobacterium tuberculosis/genética , Transcriptoma/genética , Evolução Molecular , Genoma Bacteriano/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética
9.
Infect Immun ; 82(5): 1793-800, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24549327

RESUMO

Virulence of the intracellular pathogen Rhodococcus equi depends on a 21.3-kb pathogenicity island located on a conjugative plasmid. To date, the only nonregulatory pathogenicity island-encoded virulence factor identified is the cell envelope-associated VapA protein. Although the pathogenicity islands from porcine and equine R. equi isolates have undergone major rearrangements, the virR operon (virR-icgA-vapH-orf7-virS) is highly conserved in both, suggesting these genes play an important role in pathogenicity. VirR and VirS are transcriptional regulators controlling expression of pathogenicity island genes, including vapA. Here, we show that while vapH and orf7 are dispensable for intracellular growth of R. equi, deletion of icgA, formerly known as orf5, encoding a major facilitator superfamily transport protein, elicited an enhanced growth phenotype in macrophages and a significant reduction in macrophage viability, while extracellular growth in broth remained unaffected. Transcription of virS, located downstream of icgA, and vapA was not affected by the icgA deletion during growth in broth or in macrophages, showing that the enhanced growth phenotype caused by deletion of icgA was not mediated through abnormal transcription of these genes. Transcription of icgA increased 6-fold within 2 h following infection of macrophages and remained significantly higher 48 h postinfection compared to levels at the start of the infection. The major facilitator superfamily transport protein IcgA is the first factor identified in R. equi that negatively affects intracellular replication. Aside from VapA, it is only the second pathogenicity island-encoded structural protein shown to play a direct role in intracellular growth of this pathogenic actinomycete.


Assuntos
Proteínas de Bactérias/metabolismo , Rhodococcus equi/metabolismo , Rhodococcus equi/fisiologia , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Regulação Bacteriana da Expressão Gênica/fisiologia , Macrófagos/microbiologia , Camundongos , Transcriptoma , Virulência , Fatores de Virulência/genética
10.
PLoS One ; 8(3): e60612, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555995

RESUMO

Rhodococcus equi is a facultative intracellular pathogen of macrophages and the causative agent of foal pneumonia. R. equi virulence is usually assessed by analyzing intracellular growth in macrophages by enumeration of bacteria following cell lysis, which is time consuming and does not allow for a high throughput analysis. This paper describes the use of an impedance based real-time method to characterize proliferation of R. equi in macrophages, using virulent and attenuated strains lacking the vapA gene or virulence plasmid. Image analysis suggested that the time-dependent cell response profile (TCRP) is governed by cell size and roundness as well as cytoxicity of infecting R. equi strains. The amplitude and inflection point of the resulting TCRP were dependent on the multiplicity of infection as well as virulence of the infecting strain, thus distinguishing between virulent and attenuated strains.


Assuntos
Infecções por Actinomycetales/microbiologia , Macrófagos/microbiologia , Rhodococcus equi/patogenicidade , Infecções por Actinomycetales/veterinária , Animais , Linhagem Celular , Impedância Elétrica , Cavalos/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/citologia , Camundongos , Mutação , Rhodococcus equi/genética , Rhodococcus equi/crescimento & desenvolvimento , Rhodococcus equi/fisiologia
11.
Microbiology (Reading) ; 157(Pt 8): 2357-2368, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21565932

RESUMO

The virulence plasmid of the pathogenic actinomycete Rhodococcus equi is essential for proliferation of this pathogen in macrophages and the development of disease. The pathogenicity island of this plasmid encodes a family of virulence-associated proteins (Vap), one of which (VapA) is a virulence factor. This paper describes the vcgAB operon (vapA co-expressed gene), located upstream of the vapA operon. Transcription of the vcgAB operon gave rise to transcripts with a half-life similar to those determined for other virulence plasmid genes (1.8 min). Transcription started at a promoter similar to the vapA promoter, and proceeded through an inefficient terminator into the downstream vcgC gene. In addition, vcgC is also transcribed from a promoter downstream of vcgB. The vcgAB and vapA operons were coordinately regulated by temperature and pH in a synergistic manner. The latter parameter only affected transcription at higher growth temperatures, indicating that temperature is the dominant regulatory signal. Transcription of the vcgAB operon increased 10-fold during the late exponential and stationary growth phases. Transcription was also upregulated during the initial hours following phagocytosis by phagocytic cells. In contrast to vcgA and vcgC, the vcgB gene is conserved in the porcine VapB-encoding plasmid, as well as in pathogenic mycobacteria. The coordinated regulation of vcgB and vapA, transcription of vcgB following phagocytosis and conservation of vcgB in pathogenic mycobacteria indicate a role for vcgB and the vcg genes in the virulence of R. equi.


Assuntos
Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica , Plasmídeos , Rhodococcus equi/patogenicidade , Fatores de Virulência/biossíntese , Animais , Linhagem Celular , Sequência Conservada , Genes Bacterianos , Ilhas Genômicas , Concentração de Íons de Hidrogênio , Cinética , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Mycobacterium/genética , Óperon , Fagocitose , Regiões Promotoras Genéticas , Estabilidade de RNA , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Rhodococcus equi/genética , Rhodococcus equi/crescimento & desenvolvimento , Temperatura , Fatores de Tempo , Sítio de Iniciação de Transcrição , Transcrição Gênica , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...